Basic coset geometries
Journal of Algebraic Combinatorics, Tome 36 (2012) no. 4, pp. 561-594.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In earlier work we gave a characterisation of pregeometries which are `basic' (that is, admit no `non-degenerate' quotients) relative to two different kinds of quotient operation, namely taking imprimitive quotients and normal quotients. Each basic geometry was shown to involve a faithful group action, which is primitive or quasiprimitive, respectively, on the set of elements of each type. For each O'Nan-Scott type of primitive group, we construct a new infinite family of geometries, which are thick and of unbounded rank, and which admit a flag-transitive automorphism group acting faithfully on the set of elements of each type as a primitive group of the given O'Nan-Scott type.
Keywords: incidence geometries, primitive permutation group
@article{JAC_2012__36_4_a3,
     author = {Giudici, Michael and Pearce, Geoffrey and Praeger, Cheryl E.},
     title = {Basic coset geometries},
     journal = {Journal of Algebraic Combinatorics},
     pages = {561--594},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2012__36_4_a3/}
}
TY  - JOUR
AU  - Giudici, Michael
AU  - Pearce, Geoffrey
AU  - Praeger, Cheryl E.
TI  - Basic coset geometries
JO  - Journal of Algebraic Combinatorics
PY  - 2012
SP  - 561
EP  - 594
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2012__36_4_a3/
LA  - en
ID  - JAC_2012__36_4_a3
ER  - 
%0 Journal Article
%A Giudici, Michael
%A Pearce, Geoffrey
%A Praeger, Cheryl E.
%T Basic coset geometries
%J Journal of Algebraic Combinatorics
%D 2012
%P 561-594
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2012__36_4_a3/
%G en
%F JAC_2012__36_4_a3
Giudici, Michael; Pearce, Geoffrey; Praeger, Cheryl E. Basic coset geometries. Journal of Algebraic Combinatorics, Tome 36 (2012) no. 4, pp. 561-594. http://geodesic.mathdoc.fr/item/JAC_2012__36_4_a3/