Affine Stanley symmetric functions for classical types
Journal of Algebraic Combinatorics, Tome 36 (2012) no. 4, pp. 595-622.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We introduce affine Stanley symmetric functions for the special orthogonal groups, a class of symmetric functions that model the cohomology of the affine Grassmannian, continuing the work of Lam and Lam, Schilling, and Shimozono on the special linear and symplectic groups, respectively. For the odd orthogonal groups, a Hopf-algebra isomorphism is given, identifying (co)homology Schubert classes with symmetric functions. For the even orthogonal groups, we conjecture an approximate model of (co)homology via symmetric functions. In the process, we develop type B and type D non-commutative k-Schur functions as elements of the affine nilCoxeter algebra that model homology of the affine Grassmannian. Additionally, Pieri rules for multiplication by special Schubert classes in homology are given in both cases. Finally, we present a type-free interpretation of Pieri factors, used in the definition of noncommutative k-Schur functions or affine Stanley symmetric functions for any classical type.
Keywords: affine Schubert calculus, Stanley symmetric functions, Pieri factors
@article{JAC_2012__36_4_a2,
     author = {Pon, Steven},
     title = {Affine {Stanley} symmetric functions for classical types},
     journal = {Journal of Algebraic Combinatorics},
     pages = {595--622},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2012__36_4_a2/}
}
TY  - JOUR
AU  - Pon, Steven
TI  - Affine Stanley symmetric functions for classical types
JO  - Journal of Algebraic Combinatorics
PY  - 2012
SP  - 595
EP  - 622
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2012__36_4_a2/
LA  - en
ID  - JAC_2012__36_4_a2
ER  - 
%0 Journal Article
%A Pon, Steven
%T Affine Stanley symmetric functions for classical types
%J Journal of Algebraic Combinatorics
%D 2012
%P 595-622
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2012__36_4_a2/
%G en
%F JAC_2012__36_4_a2
Pon, Steven. Affine Stanley symmetric functions for classical types. Journal of Algebraic Combinatorics, Tome 36 (2012) no. 4, pp. 595-622. http://geodesic.mathdoc.fr/item/JAC_2012__36_4_a2/