On the nullspace of arc-transitive graphs over finite fields
Journal of Algebraic Combinatorics, Tome 36 (2012) no. 3, pp. 389-401.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let A be the adjacency matrix of a graph $\Gamma $. The nullity of A (that is, the dimension of the nullspace of A), when viewed as a matrix over a field of prime characteristic p, is called the p-nullity of $\Gamma $. We present several families of arc-transitive graphs with arbitrarily large p-nullity. We also show that the p-nullity of a vertex-transitive graph of order a power of p is zero, provided that the valency of the graph is coprime to p.
Keywords: arc-transitive graphs, graph-restrictive groups, spectral graph theory, finite fields
@article{JAC_2012__36_3_a5,
     author = {Poto\v{c}nik, Primo\v{z} and Spiga, Pablo and Verret, Gabriel},
     title = {On the nullspace of arc-transitive graphs over finite fields},
     journal = {Journal of Algebraic Combinatorics},
     pages = {389--401},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2012__36_3_a5/}
}
TY  - JOUR
AU  - Potočnik, Primož
AU  - Spiga, Pablo
AU  - Verret, Gabriel
TI  - On the nullspace of arc-transitive graphs over finite fields
JO  - Journal of Algebraic Combinatorics
PY  - 2012
SP  - 389
EP  - 401
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2012__36_3_a5/
LA  - en
ID  - JAC_2012__36_3_a5
ER  - 
%0 Journal Article
%A Potočnik, Primož
%A Spiga, Pablo
%A Verret, Gabriel
%T On the nullspace of arc-transitive graphs over finite fields
%J Journal of Algebraic Combinatorics
%D 2012
%P 389-401
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2012__36_3_a5/
%G en
%F JAC_2012__36_3_a5
Potočnik, Primož; Spiga, Pablo; Verret, Gabriel. On the nullspace of arc-transitive graphs over finite fields. Journal of Algebraic Combinatorics, Tome 36 (2012) no. 3, pp. 389-401. http://geodesic.mathdoc.fr/item/JAC_2012__36_3_a5/