Staircase skew Schur functions are Schur $P$-positive
Journal of Algebraic Combinatorics, Tome 36 (2012) no. 3, pp. 409-423.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove Stanley's conjecture that, if $\delta _{ n }$ is the staircase shape, then the skew Schur functions $s_{\delta_{n} / \mu}$ are non-negative sums of Schur P-functions. We prove that the coefficients in this sum count certain fillings of shifted shapes. In particular, for the skew Schur function $s_{\delta_{n} / \delta _{n-2}}$ , we discuss connections with Eulerian numbers and alternating permutations.
Keywords: Schur functions, Schur P-functions, shifted tableaux, Eulerian numbers, alternating permutations
@article{JAC_2012__36_3_a3,
     author = {Ardila, Federico and Serrano, Luis G.},
     title = {Staircase skew {Schur} functions are {Schur} $P$-positive},
     journal = {Journal of Algebraic Combinatorics},
     pages = {409--423},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2012__36_3_a3/}
}
TY  - JOUR
AU  - Ardila, Federico
AU  - Serrano, Luis G.
TI  - Staircase skew Schur functions are Schur $P$-positive
JO  - Journal of Algebraic Combinatorics
PY  - 2012
SP  - 409
EP  - 423
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2012__36_3_a3/
LA  - en
ID  - JAC_2012__36_3_a3
ER  - 
%0 Journal Article
%A Ardila, Federico
%A Serrano, Luis G.
%T Staircase skew Schur functions are Schur $P$-positive
%J Journal of Algebraic Combinatorics
%D 2012
%P 409-423
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2012__36_3_a3/
%G en
%F JAC_2012__36_3_a3
Ardila, Federico; Serrano, Luis G. Staircase skew Schur functions are Schur $P$-positive. Journal of Algebraic Combinatorics, Tome 36 (2012) no. 3, pp. 409-423. http://geodesic.mathdoc.fr/item/JAC_2012__36_3_a3/