Gelfand models and Robinson-Schensted correspondence
Journal of Algebraic Combinatorics, Tome 36 (2012) no. 2, pp. 175-207.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In F. Caselli (Involutory reflection groups and their models, J. Algebra 24:370-393, 2010), a uniform Gelfand model is constructed for all nonexceptional irreducible complex reflection groups which are involutory. Such models can be naturally decomposed into the direct sum of submodules indexed by S $_{ n }$-conjugacy classes, and we present here a general result that relates the irreducible decomposition of these submodules with the projective Robinson-Schensted correspondence. This description also reflects, in a very explicit way, the existence of split representations for these groups.
Keywords: complex reflection groups, characters and representations of finite groups, Clifford theory
@article{JAC_2012__36_2_a7,
     author = {Caselli, Fabrizio and Fulci, Roberta},
     title = {Gelfand models and {Robinson-Schensted} correspondence},
     journal = {Journal of Algebraic Combinatorics},
     pages = {175--207},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2012__36_2_a7/}
}
TY  - JOUR
AU  - Caselli, Fabrizio
AU  - Fulci, Roberta
TI  - Gelfand models and Robinson-Schensted correspondence
JO  - Journal of Algebraic Combinatorics
PY  - 2012
SP  - 175
EP  - 207
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2012__36_2_a7/
LA  - en
ID  - JAC_2012__36_2_a7
ER  - 
%0 Journal Article
%A Caselli, Fabrizio
%A Fulci, Roberta
%T Gelfand models and Robinson-Schensted correspondence
%J Journal of Algebraic Combinatorics
%D 2012
%P 175-207
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2012__36_2_a7/
%G en
%F JAC_2012__36_2_a7
Caselli, Fabrizio; Fulci, Roberta. Gelfand models and Robinson-Schensted correspondence. Journal of Algebraic Combinatorics, Tome 36 (2012) no. 2, pp. 175-207. http://geodesic.mathdoc.fr/item/JAC_2012__36_2_a7/