Mixing chiral polytopes
Journal of Algebraic Combinatorics, Tome 36 (2012) no. 2, pp. 263-277.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: An abstract polytope of rank n is said to be chiral if its automorphism group has two orbits on the flags, such that adjacent flags belong to distinct orbits. Examples of chiral polytopes have been difficult to find. A "mixing" construction lets us combine polytopes to build new regular and chiral polytopes. By using the chirality group of a polytope, we are able to give simple criteria for when the mix of two polytopes is chiral.
Keywords: abstract regular polytope, chiral polytope, chiral maps, chirality group
@article{JAC_2012__36_2_a2,
     author = {Cunningham, Gabe},
     title = {Mixing chiral polytopes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {263--277},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2012__36_2_a2/}
}
TY  - JOUR
AU  - Cunningham, Gabe
TI  - Mixing chiral polytopes
JO  - Journal of Algebraic Combinatorics
PY  - 2012
SP  - 263
EP  - 277
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2012__36_2_a2/
LA  - en
ID  - JAC_2012__36_2_a2
ER  - 
%0 Journal Article
%A Cunningham, Gabe
%T Mixing chiral polytopes
%J Journal of Algebraic Combinatorics
%D 2012
%P 263-277
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2012__36_2_a2/
%G en
%F JAC_2012__36_2_a2
Cunningham, Gabe. Mixing chiral polytopes. Journal of Algebraic Combinatorics, Tome 36 (2012) no. 2, pp. 263-277. http://geodesic.mathdoc.fr/item/JAC_2012__36_2_a2/