Arc-regular cubic graphs of order four times an odd integer
Journal of Algebraic Combinatorics, Tome 36 (2012) no. 1, pp. 21-31.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A graph is arc-regular if its automorphism group acts sharply-transitively on the set of its ordered edges. This paper answers an open question about the existence of arc-regular 3-valent graphs of order $4 m$ where $m$ is an odd integer. Using the Gorenstein-Walter theorem, it is shown that any such graph must be a normal cover of a base graph, where the base graph has an arc-regular group of automorphisms that is isomorphic to a subgroup of $Aut(PSL(2, q))$ containing $PSL(2, q)$ for some odd prime-power $q$. Also a construction is given for infinitely many such graphs-namely a family of Cayley graphs for the groups $PSL(2, p ^{3})$ where $p$ is an odd prime; the smallest of these has order 9828.
Classification : valent, one-regular, Cayley, graphs, for, dihedral, groups, from, the, work, of, Kwak, and, Oh, [19], and, Wang
Keywords: keywords arc-regular graph, one-regular graph, symmetric graph, Cayley graph
@article{JAC_2012__36_1_a7,
     author = {Conder, Marston D.E. and Feng, Yan-Quan},
     title = {Arc-regular cubic graphs of order four times an odd integer},
     journal = {Journal of Algebraic Combinatorics},
     pages = {21--31},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2012__36_1_a7/}
}
TY  - JOUR
AU  - Conder, Marston D.E.
AU  - Feng, Yan-Quan
TI  - Arc-regular cubic graphs of order four times an odd integer
JO  - Journal of Algebraic Combinatorics
PY  - 2012
SP  - 21
EP  - 31
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2012__36_1_a7/
LA  - en
ID  - JAC_2012__36_1_a7
ER  - 
%0 Journal Article
%A Conder, Marston D.E.
%A Feng, Yan-Quan
%T Arc-regular cubic graphs of order four times an odd integer
%J Journal of Algebraic Combinatorics
%D 2012
%P 21-31
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2012__36_1_a7/
%G en
%F JAC_2012__36_1_a7
Conder, Marston D.E.; Feng, Yan-Quan. Arc-regular cubic graphs of order four times an odd integer. Journal of Algebraic Combinatorics, Tome 36 (2012) no. 1, pp. 21-31. http://geodesic.mathdoc.fr/item/JAC_2012__36_1_a7/