Further Pieri-type formulas for the nonsymmetric Macdonald polynomial
Journal of Algebraic Combinatorics, Tome 36 (2012) no. 1, pp. 45-66.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The branching coefficients in the expansion of the elementary symmetric function multiplied by a symmetric Macdonald polynomial $P _{ \kappa }( z)$ are known explicitly. These formulas generalise the known $r=1$ case of the Pieri-type formulas for the nonsymmetric Macdonald polynomials $E _{ \eta }( z)$. In this paper, we extend beyond the case $r=1$ for the nonsymmetric Macdonald polynomials, giving the full generalisation of the Pieri-type formulas for symmetric Macdonald polynomials. The decomposition also allows the evaluation of the generalised binomial coefficients $\tbinom h$ n $_{ q, t} \tbinom{\eta }{\nu }$_q,t associated with the nonsymmetric Macdonald polynomials.
Keywords: keywords Macdonald polynomial, Pieri formulas, nonsymmetric, q-binomial coefficients
@article{JAC_2012__36_1_a5,
     author = {Baratta, W.},
     title = {Further {Pieri-type} formulas for the nonsymmetric {Macdonald} polynomial},
     journal = {Journal of Algebraic Combinatorics},
     pages = {45--66},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2012__36_1_a5/}
}
TY  - JOUR
AU  - Baratta, W.
TI  - Further Pieri-type formulas for the nonsymmetric Macdonald polynomial
JO  - Journal of Algebraic Combinatorics
PY  - 2012
SP  - 45
EP  - 66
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2012__36_1_a5/
LA  - en
ID  - JAC_2012__36_1_a5
ER  - 
%0 Journal Article
%A Baratta, W.
%T Further Pieri-type formulas for the nonsymmetric Macdonald polynomial
%J Journal of Algebraic Combinatorics
%D 2012
%P 45-66
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2012__36_1_a5/
%G en
%F JAC_2012__36_1_a5
Baratta, W. Further Pieri-type formulas for the nonsymmetric Macdonald polynomial. Journal of Algebraic Combinatorics, Tome 36 (2012) no. 1, pp. 45-66. http://geodesic.mathdoc.fr/item/JAC_2012__36_1_a5/