Signed enumeration of ribbon tableaux: an approach through growth diagrams
Journal of Algebraic Combinatorics, Tome 36 (2012) no. 1, pp. 67-102.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We give an extension of the famous Schensted correspondence to the case of ribbon tableaux, where ribbons are allowed to be of different sizes. This is done by extending Fomin's growth diagram approach of the classical correspondence, in particular by allowing signs in the enumeration. As an application, we give in particular a combinatorial proof, based on the Murnaghan-Nakayama rule, for the evaluation of the column sums of the character table of the symmetric group.
Keywords: keywords ribbon tableaux, growth diagrams, murnaghan-Nakayama rule, garsia-Milne involution principle, RSK correspondence
@article{JAC_2012__36_1_a4,
     author = {Gouyou-Beauchamps, Dominique and Nadeau, Philippe},
     title = {Signed enumeration of ribbon tableaux: an approach through growth diagrams},
     journal = {Journal of Algebraic Combinatorics},
     pages = {67--102},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2012__36_1_a4/}
}
TY  - JOUR
AU  - Gouyou-Beauchamps, Dominique
AU  - Nadeau, Philippe
TI  - Signed enumeration of ribbon tableaux: an approach through growth diagrams
JO  - Journal of Algebraic Combinatorics
PY  - 2012
SP  - 67
EP  - 102
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2012__36_1_a4/
LA  - en
ID  - JAC_2012__36_1_a4
ER  - 
%0 Journal Article
%A Gouyou-Beauchamps, Dominique
%A Nadeau, Philippe
%T Signed enumeration of ribbon tableaux: an approach through growth diagrams
%J Journal of Algebraic Combinatorics
%D 2012
%P 67-102
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2012__36_1_a4/
%G en
%F JAC_2012__36_1_a4
Gouyou-Beauchamps, Dominique; Nadeau, Philippe. Signed enumeration of ribbon tableaux: an approach through growth diagrams. Journal of Algebraic Combinatorics, Tome 36 (2012) no. 1, pp. 67-102. http://geodesic.mathdoc.fr/item/JAC_2012__36_1_a4/