Geometric complexity theory. III: On deciding nonvanishing of a Littlewood-Richardson coefficient
Journal of Algebraic Combinatorics, Tome 36 (2012) no. 1, pp. 103-110.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We point out that the positivity of a Littlewood-Richardson coefficient _boxclose_boxclose_, c^gamma_alpha, beta for $sl _{ n }$ can be decided in strongly polynomial time. This means that the number of arithmetic operations is polynomial in $n$ and independent of the bit lengths of the specifications of the partitions $\alpha , \beta $, and $\gamma $, and each operation involves numbers whose bitlength is polynomial in $n$ and the bit lengths $\alpha , \beta $, and $\gamma $. Secondly, we observe that nonvanishing of a generalized Littlewood-Richardson coefficient of any type can be decided in strongly polynomial time assuming an analogue of the saturation conjecture for these types, and that for weights $\alpha , \beta , \gamma $, the positivity of $c ^{ 2 g} _{2 a, 2 b}$ c^ 2gamma_2alpha, 2beta can (unconditionally) be decided in strongly polynomial time.
Keywords: keywords Littlewood-richardon coefficients, geometric complexity theory, algorithms
@article{JAC_2012__36_1_a3,
     author = {Mulmuley, Ketan D. and Narayanan, Hariharan and Sohoni, Milind},
     title = {Geometric complexity theory. {III:} {On} deciding nonvanishing of a {Littlewood-Richardson} coefficient},
     journal = {Journal of Algebraic Combinatorics},
     pages = {103--110},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2012__36_1_a3/}
}
TY  - JOUR
AU  - Mulmuley, Ketan D.
AU  - Narayanan, Hariharan
AU  - Sohoni, Milind
TI  - Geometric complexity theory. III: On deciding nonvanishing of a Littlewood-Richardson coefficient
JO  - Journal of Algebraic Combinatorics
PY  - 2012
SP  - 103
EP  - 110
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2012__36_1_a3/
LA  - en
ID  - JAC_2012__36_1_a3
ER  - 
%0 Journal Article
%A Mulmuley, Ketan D.
%A Narayanan, Hariharan
%A Sohoni, Milind
%T Geometric complexity theory. III: On deciding nonvanishing of a Littlewood-Richardson coefficient
%J Journal of Algebraic Combinatorics
%D 2012
%P 103-110
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2012__36_1_a3/
%G en
%F JAC_2012__36_1_a3
Mulmuley, Ketan D.; Narayanan, Hariharan; Sohoni, Milind. Geometric complexity theory. III: On deciding nonvanishing of a Littlewood-Richardson coefficient. Journal of Algebraic Combinatorics, Tome 36 (2012) no. 1, pp. 103-110. http://geodesic.mathdoc.fr/item/JAC_2012__36_1_a3/