Homology of balanced complexes via the Fourier transform
Journal of Algebraic Combinatorics, Tome 35 (2012) no. 4, pp. 565-571.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $G _{0},\cdots , G _{ k }$ be finite abelian groups, and let $G _{0}\ast \dots \ast G _{ k }$ be the join of the 0-dimensional complexes $G _{ i }$. We give a characterization of the integral $k$-coboundaries of subcomplexes of $G _{0}\ast \dots \ast G _{ k }$ in terms of the Fourier transform on the group $G _{0}\times \dots \times G _{ k }$. This provides a short proof of an extension of a recent result of Musiker and Reiner on a topological interpretation of the cyclotomic polynomial.
Keywords: keywords simplicial homology, Fourier transform
@article{JAC_2012__35_4_a4,
     author = {Meshulam, Roy},
     title = {Homology of balanced complexes via the {Fourier} transform},
     journal = {Journal of Algebraic Combinatorics},
     pages = {565--571},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2012__35_4_a4/}
}
TY  - JOUR
AU  - Meshulam, Roy
TI  - Homology of balanced complexes via the Fourier transform
JO  - Journal of Algebraic Combinatorics
PY  - 2012
SP  - 565
EP  - 571
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2012__35_4_a4/
LA  - en
ID  - JAC_2012__35_4_a4
ER  - 
%0 Journal Article
%A Meshulam, Roy
%T Homology of balanced complexes via the Fourier transform
%J Journal of Algebraic Combinatorics
%D 2012
%P 565-571
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2012__35_4_a4/
%G en
%F JAC_2012__35_4_a4
Meshulam, Roy. Homology of balanced complexes via the Fourier transform. Journal of Algebraic Combinatorics, Tome 35 (2012) no. 4, pp. 565-571. http://geodesic.mathdoc.fr/item/JAC_2012__35_4_a4/