Drinfeld realization of the elliptic Hall algebra
Journal of Algebraic Combinatorics, Tome 35 (2012) no. 2, pp. 237-262.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We give a new presentation of the Drinfeld double $E$ boldsymbol$\mathcal $E of the (spherical) elliptic Hall algebra $E ^{+}$ boldsymbolmathcalE^+ introduced in our previous work (Burban and Schiffmann in Duke Math. J. preprint math.AG/0505148, 2005). This presentation is similar in spirit to Drinfeld's `new realization' of quantum affine algebras. This answers, in the case of elliptic curves, a question of Kapranov concerning functional relations satisfied by (principal, unramified) Eisenstein series for $GL( n)$ over a function field. It also provides proofs of some recent conjectures of Feigin, Feigin, Jimbo, Miwa and Mukhin ( arXiv:1002.3100, 2010).
Keywords: keywords Hall algebras, Cherednik algebras, shuffle algebras, Drinfeld new realization
@article{JAC_2012__35_2_a4,
     author = {Schiffmann, Olivier},
     title = {Drinfeld realization of the elliptic {Hall} algebra},
     journal = {Journal of Algebraic Combinatorics},
     pages = {237--262},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2012__35_2_a4/}
}
TY  - JOUR
AU  - Schiffmann, Olivier
TI  - Drinfeld realization of the elliptic Hall algebra
JO  - Journal of Algebraic Combinatorics
PY  - 2012
SP  - 237
EP  - 262
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2012__35_2_a4/
LA  - en
ID  - JAC_2012__35_2_a4
ER  - 
%0 Journal Article
%A Schiffmann, Olivier
%T Drinfeld realization of the elliptic Hall algebra
%J Journal of Algebraic Combinatorics
%D 2012
%P 237-262
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2012__35_2_a4/
%G en
%F JAC_2012__35_2_a4
Schiffmann, Olivier. Drinfeld realization of the elliptic Hall algebra. Journal of Algebraic Combinatorics, Tome 35 (2012) no. 2, pp. 237-262. http://geodesic.mathdoc.fr/item/JAC_2012__35_2_a4/