A basis for the symplectic group branching algebra
Journal of Algebraic Combinatorics, Tome 35 (2012) no. 2, pp. 269-290.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The symplectic group branching algebra, $B \mathcal $B, is a graded algebra whose components encode the multiplicities of irreducible representations of Sp $_{2 n - 2}(\Bbb C)$ in each finite-dimensional irreducible representation of Sp $_{2 n }(\Bbb C)$. By describing on $B \mathcal $B an ASL structure, we construct an explicit standard monomial basis of $B \mathcal $B consisting of Sp $_{2 n - 2}(\Bbb C)$ highest weight vectors. Moreover, $B \mathcal $B is known to carry a canonical action of the $n$-fold product SL $_{2}\times \dots \times $SL $_{2}$, and we show that the standard monomial basis is the unique (up to scalar) weight basis associated to this representation. Finally, using the theory of Hibi algebras we describe a deformation of $Spec( B)$ mathrmSpec($\mathcal $B) into an explicitly described toric variety.
Keywords: keywords symplectic groups, branching rules, hibi algebra, algebra with straightening law
@article{JAC_2012__35_2_a2,
     author = {Kim, Sangjib and Yacobi, Oded},
     title = {A basis for the symplectic group branching algebra},
     journal = {Journal of Algebraic Combinatorics},
     pages = {269--290},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2012__35_2_a2/}
}
TY  - JOUR
AU  - Kim, Sangjib
AU  - Yacobi, Oded
TI  - A basis for the symplectic group branching algebra
JO  - Journal of Algebraic Combinatorics
PY  - 2012
SP  - 269
EP  - 290
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2012__35_2_a2/
LA  - en
ID  - JAC_2012__35_2_a2
ER  - 
%0 Journal Article
%A Kim, Sangjib
%A Yacobi, Oded
%T A basis for the symplectic group branching algebra
%J Journal of Algebraic Combinatorics
%D 2012
%P 269-290
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2012__35_2_a2/
%G en
%F JAC_2012__35_2_a2
Kim, Sangjib; Yacobi, Oded. A basis for the symplectic group branching algebra. Journal of Algebraic Combinatorics, Tome 35 (2012) no. 2, pp. 269-290. http://geodesic.mathdoc.fr/item/JAC_2012__35_2_a2/