On the existence of minimum cubature formulas for Gaussian measure on $\mathbb R^{2}$ of degree $t$ supported by $[\frac{t}{4}]+1$ circles
Journal of Algebraic Combinatorics, Tome 35 (2012) no. 1, pp. 109-119.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we prove that there exists no minimum cubature formula of degree $4 k$ and $4 k+2$ for Gaussian measure on $\Bbb R ^{2}$ supported by $k+1$ circles for any positive integer $k$, except for two formulas of degree 4.
Keywords: keywords cubature formula, Euclidean design, Gaussian design, Laguerre polynomial
@article{JAC_2012__35_1_a3,
     author = {Bannai, Eiichi and Bannai, Etsuko and Hirao, Masatake and Sawa, Masanori},
     title = {On the existence of minimum cubature formulas for {Gaussian} measure on $\mathbb R^{2}$ of degree $t$ supported by $[\frac{t}{4}]+1$ circles},
     journal = {Journal of Algebraic Combinatorics},
     pages = {109--119},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2012__35_1_a3/}
}
TY  - JOUR
AU  - Bannai, Eiichi
AU  - Bannai, Etsuko
AU  - Hirao, Masatake
AU  - Sawa, Masanori
TI  - On the existence of minimum cubature formulas for Gaussian measure on $\mathbb R^{2}$ of degree $t$ supported by $[\frac{t}{4}]+1$ circles
JO  - Journal of Algebraic Combinatorics
PY  - 2012
SP  - 109
EP  - 119
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2012__35_1_a3/
LA  - en
ID  - JAC_2012__35_1_a3
ER  - 
%0 Journal Article
%A Bannai, Eiichi
%A Bannai, Etsuko
%A Hirao, Masatake
%A Sawa, Masanori
%T On the existence of minimum cubature formulas for Gaussian measure on $\mathbb R^{2}$ of degree $t$ supported by $[\frac{t}{4}]+1$ circles
%J Journal of Algebraic Combinatorics
%D 2012
%P 109-119
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2012__35_1_a3/
%G en
%F JAC_2012__35_1_a3
Bannai, Eiichi; Bannai, Etsuko; Hirao, Masatake; Sawa, Masanori. On the existence of minimum cubature formulas for Gaussian measure on $\mathbb R^{2}$ of degree $t$ supported by $[\frac{t}{4}]+1$ circles. Journal of Algebraic Combinatorics, Tome 35 (2012) no. 1, pp. 109-119. http://geodesic.mathdoc.fr/item/JAC_2012__35_1_a3/