Möbius transform, moment-angle complexes and Halperin-Carlsson conjecture
Journal of Algebraic Combinatorics, Tome 35 (2012) no. 1, pp. 121-140.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The motivation for this paper comes from the Halperin-Carlsson conjecture for (real) moment-angle complexes. We first give an algebraic combinatorics formula for the Möbius transform of an abstract simplicial complex $K$ on $[ m]={1,\cdots , m}$ in terms of the Betti numbers of the Stanley-Reisner face ring $k( K)$ of $K$ over a field k. We then employ a way of compressing $K$ to provide the lower bound on the sum of those Betti numbers using our formula. Next we consider a class of generalized moment-angle complexes $Z _{ K} ^{(\mathbb D, \mathbb S)}$ mathcalZ_K^(underlinemathbb D, underlinemathbb S), including the moment-angle complex $Z _{ K}$ mathcalZ_K and the real moment-angle complex $\mathbb R Z _{ K}$ mathbbR$\mathcal $Z_K as special examples. We show that $H ^{*}( Z _{ K} ^{(\mathbb D, \mathbb S)}$; k) H^*(mathcalZ_K^(underlinemathbb D, underlinemathbb S);mathbfk) has the same graded k-module structure as Tor $^{ k[ v]}( k( K), k)$. Finally we show that the Halperin-Carlsson conjecture holds for $Z _{ K}$ mathcalZ_K (resp. $\mathbb R Z _{ K}$ mathbb RmathcalZ_K) under the restriction of the natural $T ^{ m }$-action on $Z _{ K}$ mathcalZ_K (resp. $(\Bbb Z _{2}) ^{ m }$-action on $\mathbb R Z _{ K}$ mathbb RmathcalZ_K).
Keywords: keywords Möbius transform, moment-angle complex, Halperin-Carlsson conjecture
@article{JAC_2012__35_1_a2,
     author = {Cao, Xiangyu and L\"u, Zhi},
     title = {M\"obius transform, moment-angle complexes and {Halperin-Carlsson} conjecture},
     journal = {Journal of Algebraic Combinatorics},
     pages = {121--140},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2012__35_1_a2/}
}
TY  - JOUR
AU  - Cao, Xiangyu
AU  - Lü, Zhi
TI  - Möbius transform, moment-angle complexes and Halperin-Carlsson conjecture
JO  - Journal of Algebraic Combinatorics
PY  - 2012
SP  - 121
EP  - 140
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2012__35_1_a2/
LA  - en
ID  - JAC_2012__35_1_a2
ER  - 
%0 Journal Article
%A Cao, Xiangyu
%A Lü, Zhi
%T Möbius transform, moment-angle complexes and Halperin-Carlsson conjecture
%J Journal of Algebraic Combinatorics
%D 2012
%P 121-140
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2012__35_1_a2/
%G en
%F JAC_2012__35_1_a2
Cao, Xiangyu; Lü, Zhi. Möbius transform, moment-angle complexes and Halperin-Carlsson conjecture. Journal of Algebraic Combinatorics, Tome 35 (2012) no. 1, pp. 121-140. http://geodesic.mathdoc.fr/item/JAC_2012__35_1_a2/