Specht modules with Abelian vertices.
Journal of Algebraic Combinatorics, Tome 35 (2012) no. 1, pp. 157-171.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we consider indecomposable Specht modules with abelian vertices. We show that the corresponding partitions are necessarily $p ^{2}$-cores where $p$ is the characteristic of the underlying field. Furthermore, in the case of $p\geq 3$, or $p=2$ and $\mu $ is 2-regular, we show that the complexity of the Specht module $S ^{ \mu }$ is precisely the $p$-weight of the partition $\mu $. In the latter case, we classify Specht modules with abelian vertices. For some applications of the above results, we extend a result of M. Wildon and compute the vertices of the Specht module $S ^{( p ^{ p})}$ S^(p^p) for $p\geq 3$.
Keywords: keywords Specht module, vertex, complexity
@article{JAC_2012__35_1_a0,
     author = {Lim, Kay Jin},
     title = {Specht modules with {Abelian} vertices.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {157--171},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2012__35_1_a0/}
}
TY  - JOUR
AU  - Lim, Kay Jin
TI  - Specht modules with Abelian vertices.
JO  - Journal of Algebraic Combinatorics
PY  - 2012
SP  - 157
EP  - 171
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2012__35_1_a0/
LA  - en
ID  - JAC_2012__35_1_a0
ER  - 
%0 Journal Article
%A Lim, Kay Jin
%T Specht modules with Abelian vertices.
%J Journal of Algebraic Combinatorics
%D 2012
%P 157-171
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2012__35_1_a0/
%G en
%F JAC_2012__35_1_a0
Lim, Kay Jin. Specht modules with Abelian vertices.. Journal of Algebraic Combinatorics, Tome 35 (2012) no. 1, pp. 157-171. http://geodesic.mathdoc.fr/item/JAC_2012__35_1_a0/