$W$-graph versions of tensoring with the $\mathcal S_n$ defining representation.
Journal of Algebraic Combinatorics, Tome 34 (2011) no. 4, pp. 545-585.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We further develop the theory of inducing $W$-graphs worked out by Howlett and Yin (Math. Z. $244(2)$:415-431, 2003 and Manuscr. Math. $115(4)$:495-511, 2004), focusing on the case $W = S _{ n}$ W = mathcalS_n. Our main application is to give two $W$-graph versions of tensoring with the $S _{ n}$ mathcalS_n defining representation $V$, one being $S _{ n}, S _{ n -1}$ mathcalS_n, mathcalS_n-1 and the other $###$, where $###$ is a subalgebra of the extended affine Hecke algebra and the subscript signifies taking the degree 1 part. We look at the corresponding $W$-graph versions of the projection $V\otimes V\otimes - \rightarrow S ^{2} V\otimes $- . This does not send canonical basis elements to canonical basis elements, but we show that it approximates doing so as the Hecke algebra parameter $u\rightarrow 0$. We make this approximation combinatorially explicit by determining it on cells and relate this to RSK growth diagrams.
Keywords: keywords W-graph, Hecke algebra, restriction and induction, canonical basis, growth diagram
@article{JAC_2011__34_4_a8,
     author = {Blasiak, Jonah},
     title = {$W$-graph versions of tensoring with the $\mathcal S_n$ defining representation.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {545--585},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a8/}
}
TY  - JOUR
AU  - Blasiak, Jonah
TI  - $W$-graph versions of tensoring with the $\mathcal S_n$ defining representation.
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 545
EP  - 585
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a8/
LA  - en
ID  - JAC_2011__34_4_a8
ER  - 
%0 Journal Article
%A Blasiak, Jonah
%T $W$-graph versions of tensoring with the $\mathcal S_n$ defining representation.
%J Journal of Algebraic Combinatorics
%D 2011
%P 545-585
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a8/
%G en
%F JAC_2011__34_4_a8
Blasiak, Jonah. $W$-graph versions of tensoring with the $\mathcal S_n$ defining representation.. Journal of Algebraic Combinatorics, Tome 34 (2011) no. 4, pp. 545-585. http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a8/