$f$-vectors of simplicial posets that are balls
Journal of Algebraic Combinatorics, Tome 34 (2011) no. 4, pp. 587-605.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Results of R. Stanley and M. Masuda completely characterize the $h$-vectors of simplicial posets whose order complexes are spheres. In this paper we examine the corresponding question in the case where the order complex is a ball. Using the face rings of these posets, we develop a series of new conditions on their $h$-vectors. We also present new methods for constructing poset balls with specific $h$-vectors. Combining this work with a new result of S. Murai we are able to give a complete characterization of the $h$-vectors of simplicial poset balls in all even dimensions, as well as odd dimensions less than or equal to five.
Keywords: keywords simplicial poset, $f$-vector, face ring, $h$-vector
@article{JAC_2011__34_4_a7,
     author = {Kolins, Samuel R.},
     title = {$f$-vectors of simplicial posets that are balls},
     journal = {Journal of Algebraic Combinatorics},
     pages = {587--605},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a7/}
}
TY  - JOUR
AU  - Kolins, Samuel R.
TI  - $f$-vectors of simplicial posets that are balls
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 587
EP  - 605
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a7/
LA  - en
ID  - JAC_2011__34_4_a7
ER  - 
%0 Journal Article
%A Kolins, Samuel R.
%T $f$-vectors of simplicial posets that are balls
%J Journal of Algebraic Combinatorics
%D 2011
%P 587-605
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a7/
%G en
%F JAC_2011__34_4_a7
Kolins, Samuel R. $f$-vectors of simplicial posets that are balls. Journal of Algebraic Combinatorics, Tome 34 (2011) no. 4, pp. 587-605. http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a7/