Coverings of the smallest Paige loop.
Journal of Algebraic Combinatorics, Tome 34 (2011) no. 4, pp. 607-615.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: By investigating the construction of the split Cayley generalized hexagon, $H(2)$, we get that there do not exist five distinct hexagon lines each a distance two apart from each other. From this we prove that the smallest Paige loop has a covering number of seven and that its automorphism group permutes these coverings transitively.
Keywords: keywords covering number, Moufang loop, generalized hexagon, split Cayley hexagon
@article{JAC_2011__34_4_a6,
     author = {Gagola, Stephen M.III},
     title = {Coverings of the smallest {Paige} loop.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {607--615},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a6/}
}
TY  - JOUR
AU  - Gagola, Stephen M.III
TI  - Coverings of the smallest Paige loop.
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 607
EP  - 615
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a6/
LA  - en
ID  - JAC_2011__34_4_a6
ER  - 
%0 Journal Article
%A Gagola, Stephen M.III
%T Coverings of the smallest Paige loop.
%J Journal of Algebraic Combinatorics
%D 2011
%P 607-615
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a6/
%G en
%F JAC_2011__34_4_a6
Gagola, Stephen M.III. Coverings of the smallest Paige loop.. Journal of Algebraic Combinatorics, Tome 34 (2011) no. 4, pp. 607-615. http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a6/