Abelian coverings of finite general linear groups and an application to their non-commuting graphs.
Journal of Algebraic Combinatorics, Tome 34 (2011) no. 4, pp. 683-710.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we introduce and study a family $A _{ n}( q)$ mathcalA_n$(q)$ of abelian subgroups of GL $_{ n}( q) {\rm $GL_n$(q)$ covering every element of GL $_{ n}( q) {\rm $GL_n$(q)$. We show that $A _{ n}( q)$ mathcalA_n$(q)$ contains all the centralizers of cyclic matrices and equality holds if $q> n$. For $q>2$, we obtain an infinite product expression for a probabilistic generating function for | $A _{ n}( q)$ | |mathcalA_n$(q)$|. This leads to upper and lower bounds which show in particular that $c _{1} q ^{ - n} \sterling \frac | A _{ n}( q)$ | | GL $_{ n}( q) | \sterling c _{2} q ^{ - n}$ c_1q^-n$\leq $frac|mathcalA_$n(q)$||mathrmGL_$n(q)|}\leq c$_2q^-n for explicit positive constants $c _{1}, c _{2}$. We also prove that similar upper and lower bounds hold for $q=2$. A subset $X$ of a finite group $G$ is said to be pairwise non-commuting if $xy \textonesuperior yx$ xynot=yx for distinct elements $x, y$ in $X$. As an application of our results on $A _{ n}( q)$ mathcalA_n$(q)$, we prove lower and upper bounds for the maximum size of a pairwise non-commuting subset of GL $_{ n }( q)$. (This is the clique number of the non-commuting graph.) Moreover, in the case where $q> n$, we give an explicit formula for the maximum size of a pairwise non-commuting set.
Keywords: keywords general linear group, cyclic matrix, non-commuting subsets of finite groups, non-commuting graph
@article{JAC_2011__34_4_a2,
     author = {Azad, Azizollah and Iranmanesh, Mohammad A. and Praeger, Cheryl E. and Spiga, Pablo},
     title = {Abelian coverings of finite general linear groups and an application to their non-commuting graphs.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {683--710},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a2/}
}
TY  - JOUR
AU  - Azad, Azizollah
AU  - Iranmanesh, Mohammad A.
AU  - Praeger, Cheryl E.
AU  - Spiga, Pablo
TI  - Abelian coverings of finite general linear groups and an application to their non-commuting graphs.
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 683
EP  - 710
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a2/
LA  - en
ID  - JAC_2011__34_4_a2
ER  - 
%0 Journal Article
%A Azad, Azizollah
%A Iranmanesh, Mohammad A.
%A Praeger, Cheryl E.
%A Spiga, Pablo
%T Abelian coverings of finite general linear groups and an application to their non-commuting graphs.
%J Journal of Algebraic Combinatorics
%D 2011
%P 683-710
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a2/
%G en
%F JAC_2011__34_4_a2
Azad, Azizollah; Iranmanesh, Mohammad A.; Praeger, Cheryl E.; Spiga, Pablo. Abelian coverings of finite general linear groups and an application to their non-commuting graphs.. Journal of Algebraic Combinatorics, Tome 34 (2011) no. 4, pp. 683-710. http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a2/