Bounding reflection length in an affine Coxeter group.
Journal of Algebraic Combinatorics, Tome 34 (2011) no. 4, pp. 711-719.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In any Coxeter group, the conjugates of elements in the standard minimal generating set are called reflections, and the minimal number of reflections needed to factor a particular element is called its reflection length. In this article we prove that the reflection length function on an affine Coxeter group has a uniform upper bound. More precisely, we prove that the reflection length function on an affine Coxeter group that naturally acts faithfully and cocompactly on $\Bbb R ^{ n }$ is bounded above by $2 n$, and we also show that this bound is optimal. Conjecturally, spherical and affine Coxeter groups are the only Coxeter groups with a uniform bound on reflection length.
Keywords: keywords Coxeter group, reflection length
@article{JAC_2011__34_4_a1,
     author = {McCammond, Jon and Petersen, T.Kyle},
     title = {Bounding reflection length in an affine {Coxeter} group.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {711--719},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a1/}
}
TY  - JOUR
AU  - McCammond, Jon
AU  - Petersen, T.Kyle
TI  - Bounding reflection length in an affine Coxeter group.
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 711
EP  - 719
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a1/
LA  - en
ID  - JAC_2011__34_4_a1
ER  - 
%0 Journal Article
%A McCammond, Jon
%A Petersen, T.Kyle
%T Bounding reflection length in an affine Coxeter group.
%J Journal of Algebraic Combinatorics
%D 2011
%P 711-719
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a1/
%G en
%F JAC_2011__34_4_a1
McCammond, Jon; Petersen, T.Kyle. Bounding reflection length in an affine Coxeter group.. Journal of Algebraic Combinatorics, Tome 34 (2011) no. 4, pp. 711-719. http://geodesic.mathdoc.fr/item/JAC_2011__34_4_a1/