Elementary Abelian $p$-groups of rank $2p+3$ are not CI-groups
Journal of Algebraic Combinatorics, Tome 34 (2011) no. 3, pp. 323-335.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For every prime $p>2$ we exhibit a Cayley graph on $\mathbb Z _{ p} ^{2 p+3}$ mathbbZ_p^2p+3 which is not a CI-graph. This proves that an elementary abelian $p$-group of rank greater than or equal to $2 p+3$ is not a CI-group. The proof is elementary and uses only multivariate polynomials and basic tools of linear algebra. Moreover, we apply our technique to give a uniform explanation for the recent works of Muzychuk and Spiga concerning the problem.
Keywords: keywords Cayley graph, CI-group, elementary abelian $p$-group
@article{JAC_2011__34_3_a8,
     author = {Somlai, G\'abor},
     title = {Elementary {Abelian} $p$-groups of rank $2p+3$ are not {CI-groups}},
     journal = {Journal of Algebraic Combinatorics},
     pages = {323--335},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__34_3_a8/}
}
TY  - JOUR
AU  - Somlai, Gábor
TI  - Elementary Abelian $p$-groups of rank $2p+3$ are not CI-groups
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 323
EP  - 335
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__34_3_a8/
LA  - en
ID  - JAC_2011__34_3_a8
ER  - 
%0 Journal Article
%A Somlai, Gábor
%T Elementary Abelian $p$-groups of rank $2p+3$ are not CI-groups
%J Journal of Algebraic Combinatorics
%D 2011
%P 323-335
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__34_3_a8/
%G en
%F JAC_2011__34_3_a8
Somlai, Gábor. Elementary Abelian $p$-groups of rank $2p+3$ are not CI-groups. Journal of Algebraic Combinatorics, Tome 34 (2011) no. 3, pp. 323-335. http://geodesic.mathdoc.fr/item/JAC_2011__34_3_a8/