The Isaacs-Navarro conjecture for covering groups of the symmetric and alternating groups in odd characteristic.
Journal of Algebraic Combinatorics, Tome 34 (2011) no. 3, pp. 401-426.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we prove that a refinement of the Alperin-McKay Conjecture for $p$-blocks of finite groups, formulated by I.M. Isaacs and G. Navarro in 2002, holds for all covering groups of the symmetric and alternating groups, whenever $p$ is an odd prime.
Keywords: keywords representation theory, symmetric group, covering groups, bar-partitions
@article{JAC_2011__34_3_a4,
     author = {Gramain, Jean-Baptiste},
     title = {The {Isaacs-Navarro} conjecture for covering groups of the symmetric and alternating groups in odd characteristic.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {401--426},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__34_3_a4/}
}
TY  - JOUR
AU  - Gramain, Jean-Baptiste
TI  - The Isaacs-Navarro conjecture for covering groups of the symmetric and alternating groups in odd characteristic.
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 401
EP  - 426
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__34_3_a4/
LA  - en
ID  - JAC_2011__34_3_a4
ER  - 
%0 Journal Article
%A Gramain, Jean-Baptiste
%T The Isaacs-Navarro conjecture for covering groups of the symmetric and alternating groups in odd characteristic.
%J Journal of Algebraic Combinatorics
%D 2011
%P 401-426
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__34_3_a4/
%G en
%F JAC_2011__34_3_a4
Gramain, Jean-Baptiste. The Isaacs-Navarro conjecture for covering groups of the symmetric and alternating groups in odd characteristic.. Journal of Algebraic Combinatorics, Tome 34 (2011) no. 3, pp. 401-426. http://geodesic.mathdoc.fr/item/JAC_2011__34_3_a4/