Set families and Foulkes modules
Journal of Algebraic Combinatorics, Tome 34 (2011) no. 3, pp. 525-544.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We construct a new family of homomorphisms from Specht modules into Foulkes modules for the symmetric group. These homomorphisms are used to give a combinatorial description of the minimal partitions (in the dominance order) which label the irreducible characters appearing as summands of the characters of Foulkes modules. The homomorphisms are defined using certain families of subsets of the natural numbers. These families are of independent interest; we prove a number of combinatorial results concerning them.
Keywords: keywords foulkes' conjecture, Specht module, foulkes module, module homomorphism, closed set family
@article{JAC_2011__34_3_a0,
     author = {Paget, Rowena and Wildon, Mark},
     title = {Set families and {Foulkes} modules},
     journal = {Journal of Algebraic Combinatorics},
     pages = {525--544},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__34_3_a0/}
}
TY  - JOUR
AU  - Paget, Rowena
AU  - Wildon, Mark
TI  - Set families and Foulkes modules
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 525
EP  - 544
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__34_3_a0/
LA  - en
ID  - JAC_2011__34_3_a0
ER  - 
%0 Journal Article
%A Paget, Rowena
%A Wildon, Mark
%T Set families and Foulkes modules
%J Journal of Algebraic Combinatorics
%D 2011
%P 525-544
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__34_3_a0/
%G en
%F JAC_2011__34_3_a0
Paget, Rowena; Wildon, Mark. Set families and Foulkes modules. Journal of Algebraic Combinatorics, Tome 34 (2011) no. 3, pp. 525-544. http://geodesic.mathdoc.fr/item/JAC_2011__34_3_a0/