The absolute order on the hyperoctahedral group
Journal of Algebraic Combinatorics, Tome 34 (2011) no. 2, pp. 183-211.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The absolute order on the hyperoctahedral group $B _{ n }$ is investigated. Using a poset fiber theorem, it is proved that the order ideal of this poset generated by the Coxeter elements is homotopy Cohen-Macaulay. This method results in a new proof of Cohen-Macaulayness of the absolute order on the symmetric group. Moreover, it is shown that every closed interval in the absolute order on $B _{ n }$ is shellable and an example of a non-Cohen-Macaulay interval in the absolute order on $D _{4}$ is given. Finally, the closed intervals in the absolute order on $B _{ n }$ and $D _{ n }$ which are lattices are characterized and some of their important enumerative invariants are computed.
Keywords: keywords hyperoctahedral group, absolute order, Cohen-Macaulay poset
@article{JAC_2011__34_2_a5,
     author = {Kallipoliti, Myrto},
     title = {The absolute order on the hyperoctahedral group},
     journal = {Journal of Algebraic Combinatorics},
     pages = {183--211},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__34_2_a5/}
}
TY  - JOUR
AU  - Kallipoliti, Myrto
TI  - The absolute order on the hyperoctahedral group
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 183
EP  - 211
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__34_2_a5/
LA  - en
ID  - JAC_2011__34_2_a5
ER  - 
%0 Journal Article
%A Kallipoliti, Myrto
%T The absolute order on the hyperoctahedral group
%J Journal of Algebraic Combinatorics
%D 2011
%P 183-211
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__34_2_a5/
%G en
%F JAC_2011__34_2_a5
Kallipoliti, Myrto. The absolute order on the hyperoctahedral group. Journal of Algebraic Combinatorics, Tome 34 (2011) no. 2, pp. 183-211. http://geodesic.mathdoc.fr/item/JAC_2011__34_2_a5/