Lattice polygons and families of curves on rational surfaces
Journal of Algebraic Combinatorics, Tome 34 (2011) no. 2, pp. 213-236.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: First we solve the problem of finding minimal degree families on toric surfaces by reducing it to lattice geometry. Then we describe how to find minimal degree families on, more generally, rational complex projective surfaces.
Keywords: keywords algebraic geometry, toric geometry, lattice polygons, families of curves, surfaces
@article{JAC_2011__34_2_a4,
     author = {Lubbes, Niels and Schicho, Josef},
     title = {Lattice polygons and families of curves on rational surfaces},
     journal = {Journal of Algebraic Combinatorics},
     pages = {213--236},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__34_2_a4/}
}
TY  - JOUR
AU  - Lubbes, Niels
AU  - Schicho, Josef
TI  - Lattice polygons and families of curves on rational surfaces
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 213
EP  - 236
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__34_2_a4/
LA  - en
ID  - JAC_2011__34_2_a4
ER  - 
%0 Journal Article
%A Lubbes, Niels
%A Schicho, Josef
%T Lattice polygons and families of curves on rational surfaces
%J Journal of Algebraic Combinatorics
%D 2011
%P 213-236
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__34_2_a4/
%G en
%F JAC_2011__34_2_a4
Lubbes, Niels; Schicho, Josef. Lattice polygons and families of curves on rational surfaces. Journal of Algebraic Combinatorics, Tome 34 (2011) no. 2, pp. 213-236. http://geodesic.mathdoc.fr/item/JAC_2011__34_2_a4/