Degree bounds for type-A weight rings and Gelfand--Tsetlin semigroups
Journal of Algebraic Combinatorics, Tome 34 (2011) no. 2, pp. 237-249.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A weight ring in type A is the coordinate ring of the GIT quotient of the variety of flags in $\Bbb C ^{ n }$ modulo a twisted action of the maximal torus in $SL( n,\Bbb C)$. We show that any weight ring in type A is generated by elements of degree strictly less than the Krull dimension, which is at worst $O( n ^{2})$. On the other hand, we show that the associated semigroup of Gelfand-Tsetlin patterns can have an essential generator of degree exponential in $n$.
Keywords: keywords weight ring, weight variety, Cohen-Macaulay ring, toric degeneration, Gelfand-tsetlin pattern
@article{JAC_2011__34_2_a3,
     author = {Howard, Benjamin J. and McAllister, Tyrrell B.},
     title = {Degree bounds for {type-A} weight rings and {Gelfand--Tsetlin} semigroups},
     journal = {Journal of Algebraic Combinatorics},
     pages = {237--249},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__34_2_a3/}
}
TY  - JOUR
AU  - Howard, Benjamin J.
AU  - McAllister, Tyrrell B.
TI  - Degree bounds for type-A weight rings and Gelfand--Tsetlin semigroups
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 237
EP  - 249
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__34_2_a3/
LA  - en
ID  - JAC_2011__34_2_a3
ER  - 
%0 Journal Article
%A Howard, Benjamin J.
%A McAllister, Tyrrell B.
%T Degree bounds for type-A weight rings and Gelfand--Tsetlin semigroups
%J Journal of Algebraic Combinatorics
%D 2011
%P 237-249
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__34_2_a3/
%G en
%F JAC_2011__34_2_a3
Howard, Benjamin J.; McAllister, Tyrrell B. Degree bounds for type-A weight rings and Gelfand--Tsetlin semigroups. Journal of Algebraic Combinatorics, Tome 34 (2011) no. 2, pp. 237-249. http://geodesic.mathdoc.fr/item/JAC_2011__34_2_a3/