Centerpole sets for colorings of Abelian groups
Journal of Algebraic Combinatorics, Tome 34 (2011) no. 2, pp. 267-300.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A subset $C\subset G$ of a group $G$ is called $k-centerpole$ if for each $k$-coloring of $G$ there is an infinite monochromatic subset $G$, which is symmetric with respect to a point $c\in C$ in the sense that $S= cS ^{ - 1} c$. By $c _{ k }( G)$ we denote the smallest cardinality $c _{ k }( G)$ of a $k$-centerpole subset in $G$. We prove that $c _{ k }( G)= c _{ k }(\Bbb Z ^{ m })$ if $G$ is an abelian group of free rank $m\geq k$. Also we prove that $c _{1}(\Bbb Z ^{ n+1})=1, c _{2}(\Bbb Z ^{ n+2})=3, c _{3}(\Bbb Z ^{ n+3})=6, 8\leq c _{4}(\Bbb Z ^{ n+4})\leq c _{4}(\Bbb Z ^{4})=12$ for all $n\in \omega $, and $\frac12( k ^{2}+3 k -4) \sterling c _{ k}(\mathbb Z ^{ n}) \sterling 2 ^{ k} -1$ -max $_{ s \sterling k -2}\binom k -1 s -1$ frac12(k^2+3k-4)$\le $c_k(mathbbZ^n)le2^k-1-max_s$\le $k-2$\binom $k-1s-1 for all $n\geq k\geq 4$.
Keywords: keywords abelian group, centerpole set, coloring, symmetric subset, monochromatic subset
@article{JAC_2011__34_2_a1,
     author = {Banakh, Taras and Chervak, Ostap},
     title = {Centerpole sets for colorings of {Abelian} groups},
     journal = {Journal of Algebraic Combinatorics},
     pages = {267--300},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__34_2_a1/}
}
TY  - JOUR
AU  - Banakh, Taras
AU  - Chervak, Ostap
TI  - Centerpole sets for colorings of Abelian groups
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 267
EP  - 300
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__34_2_a1/
LA  - en
ID  - JAC_2011__34_2_a1
ER  - 
%0 Journal Article
%A Banakh, Taras
%A Chervak, Ostap
%T Centerpole sets for colorings of Abelian groups
%J Journal of Algebraic Combinatorics
%D 2011
%P 267-300
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__34_2_a1/
%G en
%F JAC_2011__34_2_a1
Banakh, Taras; Chervak, Ostap. Centerpole sets for colorings of Abelian groups. Journal of Algebraic Combinatorics, Tome 34 (2011) no. 2, pp. 267-300. http://geodesic.mathdoc.fr/item/JAC_2011__34_2_a1/