Summary: For every composition $\lambda $ of a positive integer $r$, we construct a finite chain complex whose terms are direct sums of permutation modules $M ^{ \mu }$ for the symmetric group $\mathfrak S _{ r}$ mathfrakS_r with Young subgroup stabilizers $\mathfrak S _{ m}$ mathfrakS_mu. The construction is combinatorial and can be carried out over every commutative base ring $k$. We conjecture that for every partition $\lambda $ the chain complex has homology concentrated in one degree (at the end of the complex) and that it is isomorphic to the dual of the Specht module $S ^{ \lambda }$. We prove the exactness in special cases.
@article{JAC_2011__34_1_a0,
author = {Boltje, Robert and Hartmann, Robert},
title = {Permutation resolutions for {Specht} modules.},
journal = {Journal of Algebraic Combinatorics},
pages = {141--162},
publisher = {mathdoc},
volume = {34},
number = {1},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JAC_2011__34_1_a0/}
}
TY - JOUR
AU - Boltje, Robert
AU - Hartmann, Robert
TI - Permutation resolutions for Specht modules.
JO - Journal of Algebraic Combinatorics
PY - 2011
SP - 141
EP - 162
VL - 34
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/JAC_2011__34_1_a0/
LA - en
ID - JAC_2011__34_1_a0
ER -
%0 Journal Article
%A Boltje, Robert
%A Hartmann, Robert
%T Permutation resolutions for Specht modules.
%J Journal of Algebraic Combinatorics
%D 2011
%P 141-162
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__34_1_a0/
%G en
%F JAC_2011__34_1_a0
Boltje, Robert; Hartmann, Robert. Permutation resolutions for Specht modules.. Journal of Algebraic Combinatorics, Tome 34 (2011) no. 1, pp. 141-162. http://geodesic.mathdoc.fr/item/JAC_2011__34_1_a0/