Isometric embeddings of Johnson graphs in Grassmann graphs
Journal of Algebraic Combinatorics, Tome 33 (2011) no. 4, pp. 555-570.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $V$ be an $n$-dimensional vector space ($4\leq n\infty $) and let $G _{ k}( V)$ mathcalG_k$(V)$ be the Grassmannian formed by all $k$-dimensional subspaces of $V$. The corresponding Grassmann graph will be denoted by $\Gamma _{ k }( V)$. We describe all isometric embeddings of Johnson graphs $J( l, m), 1 m l - 1$ in $\Gamma _{ k }( V), 1 k n - 1$ (Theorem 4). As a consequence, we get the following: the image of every isometric embedding of $J( n, k)$ in $\Gamma _{ k }( V)$ is an apartment of $G _{ k}( V)$ mathcalG_k$(V)$ if and only if $n=2 k$. Our second result (Theorem 5) is a classification of rigid isometric embeddings of Johnson graphs in $\Gamma _{ k }( V), 1 k n - 1$.
Keywords: keywords Johnson graph, Grassmann graph, building, apartment
@article{JAC_2011__33_4_a2,
     author = {Pankov, Mark},
     title = {Isometric embeddings of {Johnson} graphs in {Grassmann} graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {555--570},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__33_4_a2/}
}
TY  - JOUR
AU  - Pankov, Mark
TI  - Isometric embeddings of Johnson graphs in Grassmann graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 555
EP  - 570
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__33_4_a2/
LA  - en
ID  - JAC_2011__33_4_a2
ER  - 
%0 Journal Article
%A Pankov, Mark
%T Isometric embeddings of Johnson graphs in Grassmann graphs
%J Journal of Algebraic Combinatorics
%D 2011
%P 555-570
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__33_4_a2/
%G en
%F JAC_2011__33_4_a2
Pankov, Mark. Isometric embeddings of Johnson graphs in Grassmann graphs. Journal of Algebraic Combinatorics, Tome 33 (2011) no. 4, pp. 555-570. http://geodesic.mathdoc.fr/item/JAC_2011__33_4_a2/