A family of reductions for Schubert intersection problems
Journal of Algebraic Combinatorics, Tome 33 (2011) no. 4, pp. 609-649.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We produce a family of reductions for Schubert intersection problems whose applicability is checked by calculating a linear combination of the dimensions involved. These reductions do not alter the Littlewood-Richardson coefficient, and this fact is connected to known multiplicative properties of these coefficients.
Keywords: keywords Schubert variety, Littlewood-Richardson rule, puzzle, tree, measure
@article{JAC_2011__33_4_a0,
     author = {Bercovici, H. and Li, W.S. and Timotin, D.},
     title = {A family of reductions for {Schubert} intersection problems},
     journal = {Journal of Algebraic Combinatorics},
     pages = {609--649},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__33_4_a0/}
}
TY  - JOUR
AU  - Bercovici, H.
AU  - Li, W.S.
AU  - Timotin, D.
TI  - A family of reductions for Schubert intersection problems
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 609
EP  - 649
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__33_4_a0/
LA  - en
ID  - JAC_2011__33_4_a0
ER  - 
%0 Journal Article
%A Bercovici, H.
%A Li, W.S.
%A Timotin, D.
%T A family of reductions for Schubert intersection problems
%J Journal of Algebraic Combinatorics
%D 2011
%P 609-649
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__33_4_a0/
%G en
%F JAC_2011__33_4_a0
Bercovici, H.; Li, W.S.; Timotin, D. A family of reductions for Schubert intersection problems. Journal of Algebraic Combinatorics, Tome 33 (2011) no. 4, pp. 609-649. http://geodesic.mathdoc.fr/item/JAC_2011__33_4_a0/