On dominance and minuscule Weyl group elements.
Journal of Algebraic Combinatorics, Tome 33 (2011) no. 3, pp. 383-399.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Fix a Dynkin graph and let $\lambda $ be a coweight. When does there exist an element $w$ of the corresponding Weyl group such that $w$ is $\lambda $-minuscule and $w( \lambda )$ is dominant? We answer this question for general Coxeter groups. We express and prove these results using a variant of Mozes' game of numbers.
Keywords: keywords dominant weights, minuscule Weyl group elements, numbers game with a cutoff
@article{JAC_2011__33_3_a5,
     author = {Gashi, Q\"endrim R. and Schedler, Travis},
     title = {On dominance and minuscule {Weyl} group elements.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {383--399},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__33_3_a5/}
}
TY  - JOUR
AU  - Gashi, Qëndrim R.
AU  - Schedler, Travis
TI  - On dominance and minuscule Weyl group elements.
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 383
EP  - 399
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__33_3_a5/
LA  - en
ID  - JAC_2011__33_3_a5
ER  - 
%0 Journal Article
%A Gashi, Qëndrim R.
%A Schedler, Travis
%T On dominance and minuscule Weyl group elements.
%J Journal of Algebraic Combinatorics
%D 2011
%P 383-399
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__33_3_a5/
%G en
%F JAC_2011__33_3_a5
Gashi, Qëndrim R.; Schedler, Travis. On dominance and minuscule Weyl group elements.. Journal of Algebraic Combinatorics, Tome 33 (2011) no. 3, pp. 383-399. http://geodesic.mathdoc.fr/item/JAC_2011__33_3_a5/