Group theoretic characterizations of Buekenhout-Metz unitals in PG$(2,q^{2})$
Journal of Algebraic Combinatorics, Tome 33 (2011) no. 3, pp. 401-407.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $G$ be the group of projectivities stabilizing a unital $U$ mathcalU in $PG(2, q ^{2})$ mathopmathrmPG(2,q^2) and let $A, B$ be two distinct points of $U$ mathcalU. In this paper we prove that, if $G$ has an elation group of order $q$ with center $A$ and a group of projectivities stabilizing both $A$ and $B$ of order a divisor of $q - 1$ greater than 2( Ö $q -1$) 2(sqrtq-1), then $U$ mathcalU is an ovoidal Buekenhout-Metz unital. From this result two group theoretic characterizations of orthogonal Buekenhout-Metz unitals are given.
Keywords: keywords unitals, projectivities, elations
@article{JAC_2011__33_3_a4,
     author = {Donati, Giorgio and Durante, Nicola},
     title = {Group theoretic characterizations of {Buekenhout-Metz} unitals in {PG}$(2,q^{2})$},
     journal = {Journal of Algebraic Combinatorics},
     pages = {401--407},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__33_3_a4/}
}
TY  - JOUR
AU  - Donati, Giorgio
AU  - Durante, Nicola
TI  - Group theoretic characterizations of Buekenhout-Metz unitals in PG$(2,q^{2})$
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 401
EP  - 407
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__33_3_a4/
LA  - en
ID  - JAC_2011__33_3_a4
ER  - 
%0 Journal Article
%A Donati, Giorgio
%A Durante, Nicola
%T Group theoretic characterizations of Buekenhout-Metz unitals in PG$(2,q^{2})$
%J Journal of Algebraic Combinatorics
%D 2011
%P 401-407
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__33_3_a4/
%G en
%F JAC_2011__33_3_a4
Donati, Giorgio; Durante, Nicola. Group theoretic characterizations of Buekenhout-Metz unitals in PG$(2,q^{2})$. Journal of Algebraic Combinatorics, Tome 33 (2011) no. 3, pp. 401-407. http://geodesic.mathdoc.fr/item/JAC_2011__33_3_a4/