Tiling bijections between paths and Brauer diagrams
Journal of Algebraic Combinatorics, Tome 33 (2011) no. 3, pp. 427-453.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: There is a natural bijection between Dyck paths and basis diagrams of the Temperley-Lieb algebra defined via tiling. $Overhang$ paths are certain generalisations of Dyck paths allowing more general steps but restricted to a rectangle in the two-dimensional integer lattice. We show that there is a natural bijection, extending the above tiling construction, between overhang paths and basis diagrams of the Brauer algebra.
Keywords: keywords Brauer algebra, temperley-Lieb diagram, pipe dream, Dyck path, overhang path, double-factorial combinatorics
@article{JAC_2011__33_3_a2,
     author = {Marsh, Robert J. and Martin, Paul},
     title = {Tiling bijections between paths and {Brauer} diagrams},
     journal = {Journal of Algebraic Combinatorics},
     pages = {427--453},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__33_3_a2/}
}
TY  - JOUR
AU  - Marsh, Robert J.
AU  - Martin, Paul
TI  - Tiling bijections between paths and Brauer diagrams
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 427
EP  - 453
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__33_3_a2/
LA  - en
ID  - JAC_2011__33_3_a2
ER  - 
%0 Journal Article
%A Marsh, Robert J.
%A Martin, Paul
%T Tiling bijections between paths and Brauer diagrams
%J Journal of Algebraic Combinatorics
%D 2011
%P 427-453
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__33_3_a2/
%G en
%F JAC_2011__33_3_a2
Marsh, Robert J.; Martin, Paul. Tiling bijections between paths and Brauer diagrams. Journal of Algebraic Combinatorics, Tome 33 (2011) no. 3, pp. 427-453. http://geodesic.mathdoc.fr/item/JAC_2011__33_3_a2/