The binomial ideal of the intersection axiom for conditional probabilities
Journal of Algebraic Combinatorics, Tome 33 (2011) no. 3, pp. 455-463.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The binomial ideal associated with the intersection axiom of conditional probability is shown to be radical and is expressed as an intersection of toric prime ideals. This solves a problem in algebraic statistics posed by Cartwright and Engström.
Keywords: keywords conditional independence, intersection axiom
@article{JAC_2011__33_3_a1,
     author = {Fink, Alex},
     title = {The binomial ideal of the intersection axiom for conditional probabilities},
     journal = {Journal of Algebraic Combinatorics},
     pages = {455--463},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__33_3_a1/}
}
TY  - JOUR
AU  - Fink, Alex
TI  - The binomial ideal of the intersection axiom for conditional probabilities
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 455
EP  - 463
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__33_3_a1/
LA  - en
ID  - JAC_2011__33_3_a1
ER  - 
%0 Journal Article
%A Fink, Alex
%T The binomial ideal of the intersection axiom for conditional probabilities
%J Journal of Algebraic Combinatorics
%D 2011
%P 455-463
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__33_3_a1/
%G en
%F JAC_2011__33_3_a1
Fink, Alex. The binomial ideal of the intersection axiom for conditional probabilities. Journal of Algebraic Combinatorics, Tome 33 (2011) no. 3, pp. 455-463. http://geodesic.mathdoc.fr/item/JAC_2011__33_3_a1/