Classification of regular embeddings of $n$-dimensional cubes
Journal of Algebraic Combinatorics, Tome 33 (2011) no. 2, pp. 215-238.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: An orientably-regular map is a 2-cell embedding of a connected graph or multigraph into an orientable surface, such that the group of all orientation-preserving automorphisms of the embedding has a single orbit on the set of all arcs (incident vertex-edge pairs). Such embeddings of the $n$-dimensional cubes $Q _{ n }$ were classified for all odd $n$ by Du, Kwak and Nedela in 2005, and in 2007, Jing Xu proved that for $n=2 m$ where $m$ is odd, they are precisely the embeddings constructed by Kwon in 2004. Here, we give a classification of orientably-regular embeddings of $Q _{ n }$ for all $n$. In particular, we show that for all even $n (=2 m)$, these embeddings are in one-to-one correspondence with elements $\sigma $ of order 1 or 2 in the symmetric group $S _{ n }$ such that $\sigma $ fixes $n$, preserves the set of all pairs $B _{ i }={ i, i+ m}$ for $1\leq i\leq m$, and induces the same permutation on this set as the permutation $B _{ i } \rightarrowtail B _{ f( i)}$ for some additive bijection $f:\Bbb Z _{ m }\rightarrow \Bbb Z _{ m }$. We also give formulae for the numbers of embeddings that are reflexible and chiral, respectively, showing that the ratio of reflexible to chiral embeddings tends to zero for large even $n$.
Keywords: keywords hypercubes, cubes, regular maps, regular embeddings, chiral
@article{JAC_2011__33_2_a4,
     author = {Catalano, Domenico A. and Conder, Marston D.E. and Du, Shao Fei and Kwon, Young Soo and Nedela, Roman and Wilson, Steve},
     title = {Classification of regular embeddings of $n$-dimensional cubes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {215--238},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__33_2_a4/}
}
TY  - JOUR
AU  - Catalano, Domenico A.
AU  - Conder, Marston D.E.
AU  - Du, Shao Fei
AU  - Kwon, Young Soo
AU  - Nedela, Roman
AU  - Wilson, Steve
TI  - Classification of regular embeddings of $n$-dimensional cubes
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 215
EP  - 238
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__33_2_a4/
LA  - en
ID  - JAC_2011__33_2_a4
ER  - 
%0 Journal Article
%A Catalano, Domenico A.
%A Conder, Marston D.E.
%A Du, Shao Fei
%A Kwon, Young Soo
%A Nedela, Roman
%A Wilson, Steve
%T Classification of regular embeddings of $n$-dimensional cubes
%J Journal of Algebraic Combinatorics
%D 2011
%P 215-238
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__33_2_a4/
%G en
%F JAC_2011__33_2_a4
Catalano, Domenico A.; Conder, Marston D.E.; Du, Shao Fei; Kwon, Young Soo; Nedela, Roman; Wilson, Steve. Classification of regular embeddings of $n$-dimensional cubes. Journal of Algebraic Combinatorics, Tome 33 (2011) no. 2, pp. 215-238. http://geodesic.mathdoc.fr/item/JAC_2011__33_2_a4/