Quiver Grassmannians associated with string modules.
Journal of Algebraic Combinatorics, Tome 33 (2011) no. 2, pp. 259-276.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We provide a technique to compute the Euler-Poincaré characteristic of a class of projective varieties called quiver Grassmannians. This technique applies to quiver Grassmannians associated with "orientable string modules". As an application we explicitly compute the Euler-Poincaré characteristic of quiver Grassmannians associated with indecomposable pre-projective, pre-injective and regular homogeneous representations of an affine quiver of type [$( A)$tilde] $_{ p,1}$ tildeA_p,1. For $p=1$, this approach provides another proof of a result due to Caldero and Zelevinsky (in Mosc. Math. J. $6(3)$:411-429, 2006).
Keywords: keywords cluster algebras, cluster character, quiver grassmannians, Euler characteristic, string modules
@article{JAC_2011__33_2_a2,
     author = {Cerulli Irelli, G.},
     title = {Quiver {Grassmannians} associated with string modules.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {259--276},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__33_2_a2/}
}
TY  - JOUR
AU  - Cerulli Irelli, G.
TI  - Quiver Grassmannians associated with string modules.
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 259
EP  - 276
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__33_2_a2/
LA  - en
ID  - JAC_2011__33_2_a2
ER  - 
%0 Journal Article
%A Cerulli Irelli, G.
%T Quiver Grassmannians associated with string modules.
%J Journal of Algebraic Combinatorics
%D 2011
%P 259-276
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__33_2_a2/
%G en
%F JAC_2011__33_2_a2
Cerulli Irelli, G. Quiver Grassmannians associated with string modules.. Journal of Algebraic Combinatorics, Tome 33 (2011) no. 2, pp. 259-276. http://geodesic.mathdoc.fr/item/JAC_2011__33_2_a2/