On the Stanley depth of squarefree Veronese ideals
Journal of Algebraic Combinatorics, Tome 33 (2011) no. 2, pp. 313-324.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $K$ be a field and $S= K[ x _{1},\cdots , x _{ n }]$. In 1982, Stanley defined what is now called the Stanley depth of an $S$-module $M$, denoted sdepth $( M)$, and conjectured that depth $( M)\leq $sdepth $( M)$ for all finitely generated $S$-modules $M$. This conjecture remains open for most cases. However, Herzog, Vladoiu and Zheng recently proposed a method of attack in the case when $M= I/ J$ with $J\subset I$ being monomial $S$-ideals. Specifically, their method associates $M$ with a partially ordered set. In this paper we take advantage of this association by using combinatorial tools to analyze squarefree Veronese ideals in $S$. In particular, if $I _{ n, d }$ is the squarefree Veronese ideal generated by all squarefree monomials of degree $d$, we show that if $1\leq d\leq $n$5 d+4$, then sdepth $( I _{ n, d })=\lfloor $( n - d)/$( d+1)\rfloor + d$, and if $d\geq 1$ and $n\geq 5 d+4$, then $d+3\leq $sdepth $( I _{ n, d })\leq \lfloor $( n - d)/$( d+1)\rfloor + d$.
Keywords: keywords Stanley depth, squarefree monomial ideal, interval partition, squarefree Veronese ideal
@article{JAC_2011__33_2_a0,
     author = {Keller, Mitchel T. and Shen, Yi-Huang and Streib, Noah and Young, Stephen J.},
     title = {On the {Stanley} depth of squarefree {Veronese} ideals},
     journal = {Journal of Algebraic Combinatorics},
     pages = {313--324},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__33_2_a0/}
}
TY  - JOUR
AU  - Keller, Mitchel T.
AU  - Shen, Yi-Huang
AU  - Streib, Noah
AU  - Young, Stephen J.
TI  - On the Stanley depth of squarefree Veronese ideals
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 313
EP  - 324
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__33_2_a0/
LA  - en
ID  - JAC_2011__33_2_a0
ER  - 
%0 Journal Article
%A Keller, Mitchel T.
%A Shen, Yi-Huang
%A Streib, Noah
%A Young, Stephen J.
%T On the Stanley depth of squarefree Veronese ideals
%J Journal of Algebraic Combinatorics
%D 2011
%P 313-324
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__33_2_a0/
%G en
%F JAC_2011__33_2_a0
Keller, Mitchel T.; Shen, Yi-Huang; Streib, Noah; Young, Stephen J. On the Stanley depth of squarefree Veronese ideals. Journal of Algebraic Combinatorics, Tome 33 (2011) no. 2, pp. 313-324. http://geodesic.mathdoc.fr/item/JAC_2011__33_2_a0/