Slices of the unitary spread
Journal of Algebraic Combinatorics, Tome 33 (2011) no. 1, pp. 37-56.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove that slices of the unitary spread of $Q ^{+}(7, q)$ mathcalQ^+(7,q), $q\equiv 2$ (mod 3), can be partitioned into five disjoint classes. Slices belonging to different classes are non-equivalent under the action of the subgroup of $P\Gamma O ^{+}(8, q)$ fixing the unitary spread. When $q$ is even, there is a connection between spreads of $Q ^{+}(7, q)$ mathcalQ^+(7,q) and symplectic 2-spreads of $PG(5, q)$ (see Dillon, Ph.D. thesis, 1974 and Dye, Ann. Mat. Pura Appl. (4) 114, 173-194, 1977). As a consequence of the above result we determine all the possible non-equivalent symplectic 2-spreads arising from the unitary spread of $Q ^{+}(7, q)$ mathcalQ^+(7,q), $q=2 ^{2 h+1}$. Some of these already appeared in Kantor, SIAM J. Algebr. Discrete Methods $3(2)$, 151-165, 1982. When $q=3 ^{ h }$, we classify, up to the action of the stabilizer in $P\Gamma O(7, q)$ of the unitary spread of $Q(6, q)$, those among its slices producing spreads of the elliptic quadric $Q ^{ -}(5, q)$ mathcalQ^-(5,q).
Keywords: keywords ovoid, unitary spread, slice
@article{JAC_2011__33_1_a7,
     author = {Lunardon, G. and Parlato, L. and Pepe, V. and Trombetti, R.},
     title = {Slices of the unitary spread},
     journal = {Journal of Algebraic Combinatorics},
     pages = {37--56},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a7/}
}
TY  - JOUR
AU  - Lunardon, G.
AU  - Parlato, L.
AU  - Pepe, V.
AU  - Trombetti, R.
TI  - Slices of the unitary spread
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 37
EP  - 56
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a7/
LA  - en
ID  - JAC_2011__33_1_a7
ER  - 
%0 Journal Article
%A Lunardon, G.
%A Parlato, L.
%A Pepe, V.
%A Trombetti, R.
%T Slices of the unitary spread
%J Journal of Algebraic Combinatorics
%D 2011
%P 37-56
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a7/
%G en
%F JAC_2011__33_1_a7
Lunardon, G.; Parlato, L.; Pepe, V.; Trombetti, R. Slices of the unitary spread. Journal of Algebraic Combinatorics, Tome 33 (2011) no. 1, pp. 37-56. http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a7/