On the representation theory of an algebra of braids and ties.
Journal of Algebraic Combinatorics, Tome 33 (2011) no. 1, pp. 57-79.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the algebra $\Cal E _{ n }( u)$ introduced by Aicardi and Juyumaya as an abstraction of the Yokonuma-Hecke algebra. We construct a tensor space representation for $\Cal E _{ n }( u)$ and show that this is faithful. We use it to give a basis of $\Cal E _{ n }( u)$ and to classify its irreducible representations.
Keywords: keywords diagram algebras, symmetric group, Specht modules
@article{JAC_2011__33_1_a6,
     author = {Ryom-Hansen, Steen},
     title = {On the representation theory of an algebra of braids and ties.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {57--79},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a6/}
}
TY  - JOUR
AU  - Ryom-Hansen, Steen
TI  - On the representation theory of an algebra of braids and ties.
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 57
EP  - 79
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a6/
LA  - en
ID  - JAC_2011__33_1_a6
ER  - 
%0 Journal Article
%A Ryom-Hansen, Steen
%T On the representation theory of an algebra of braids and ties.
%J Journal of Algebraic Combinatorics
%D 2011
%P 57-79
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a6/
%G en
%F JAC_2011__33_1_a6
Ryom-Hansen, Steen. On the representation theory of an algebra of braids and ties.. Journal of Algebraic Combinatorics, Tome 33 (2011) no. 1, pp. 57-79. http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a6/