Fredman's reciprocity, invariants of Abelian groups, and the permanent of the Cayley table.
Journal of Algebraic Combinatorics, Tome 33 (2011) no. 1, pp. 111-125.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $C _{ n}$ mathcalC_n denote the cyclic group of order $n$. For $G= C _{ n}$ G=mathcalC_n, we compute the Poincaré series of all $C _{ n}$ mathcalC_n-isotypic components in $### (the symmetric tensor exterior algebra of ###)$. From this we derive a general reciprocity and some number-theoretic identities. This generalises results of Fredman and Elashvili-Jibladze. Then we consider the Cayley table, $###$, of $G$ and some generalisations of it. In particular, we prove that the number of formally different terms in the permanent of $###$ equals $###$, where $n$ is the order of $G$.
Keywords: keywords molien formula, Poincaré series, permanent, Ramanujan's sum
@article{JAC_2011__33_1_a3,
     author = {Panyushev, Dmitri I.},
     title = {Fredman's reciprocity, invariants of {Abelian} groups, and the permanent of the {Cayley} table.},
     journal = {Journal of Algebraic Combinatorics},
     pages = {111--125},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a3/}
}
TY  - JOUR
AU  - Panyushev, Dmitri I.
TI  - Fredman's reciprocity, invariants of Abelian groups, and the permanent of the Cayley table.
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 111
EP  - 125
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a3/
LA  - en
ID  - JAC_2011__33_1_a3
ER  - 
%0 Journal Article
%A Panyushev, Dmitri I.
%T Fredman's reciprocity, invariants of Abelian groups, and the permanent of the Cayley table.
%J Journal of Algebraic Combinatorics
%D 2011
%P 111-125
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a3/
%G en
%F JAC_2011__33_1_a3
Panyushev, Dmitri I. Fredman's reciprocity, invariants of Abelian groups, and the permanent of the Cayley table.. Journal of Algebraic Combinatorics, Tome 33 (2011) no. 1, pp. 111-125. http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a3/