Non-Abelian representations of the slim dense near hexagons on 81 and 243 points
Journal of Algebraic Combinatorics, Tome 33 (2011) no. 1, pp. 127-140.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove that the near hexagon $Q$(5,2)$\times \mathbb L _{3} Q(5,2)$timesmathbbL_3 has a non-abelian representation in the extra-special 2-group $2 ^{1+12} _{+} 2$^1+12_+ and that the near hexagon $Q$(5,2) $\otimes $Q(5,2) has a non-abelian representation in the extra-special 2-group $2 ^{1+18} _{ -} 2$^1+18_-. The description of the non-abelian representation of $Q$(5,2) $\otimes $Q(5,2) makes use of a new combinatorial construction of this near hexagon.
Keywords: keywords near hexagon, non-abelian representation, extra-special 2-group
@article{JAC_2011__33_1_a2,
     author = {De Bruyn, B. and Sahoo, B.K. and Sastry, N.S.N.},
     title = {Non-Abelian representations of the slim dense near hexagons on 81 and 243 points},
     journal = {Journal of Algebraic Combinatorics},
     pages = {127--140},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a2/}
}
TY  - JOUR
AU  - De Bruyn, B.
AU  - Sahoo, B.K.
AU  - Sastry, N.S.N.
TI  - Non-Abelian representations of the slim dense near hexagons on 81 and 243 points
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 127
EP  - 140
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a2/
LA  - en
ID  - JAC_2011__33_1_a2
ER  - 
%0 Journal Article
%A De Bruyn, B.
%A Sahoo, B.K.
%A Sastry, N.S.N.
%T Non-Abelian representations of the slim dense near hexagons on 81 and 243 points
%J Journal of Algebraic Combinatorics
%D 2011
%P 127-140
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a2/
%G en
%F JAC_2011__33_1_a2
De Bruyn, B.; Sahoo, B.K.; Sastry, N.S.N. Non-Abelian representations of the slim dense near hexagons on 81 and 243 points. Journal of Algebraic Combinatorics, Tome 33 (2011) no. 1, pp. 127-140. http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a2/