Explicit formulae for kerov polynomials
Journal of Algebraic Combinatorics, Tome 33 (2011) no. 1, pp. 141-151.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove two formulae expressing the Kerov polynomial $\Sigma _{ k }$ as a weighted sum over the set of noncrossing partitions of the set ${1,\cdots , k+1}$. We also give a combinatorial description of a family of symmetric functions specializing in the coefficients of $\Sigma _{ k }$.
Keywords: keywords kerov polynomials, noncrossing partitions, symmetric group, normalized characters, symmetric functions
@article{JAC_2011__33_1_a1,
     author = {Petrullo, P. and Senato, D.},
     title = {Explicit formulae for kerov polynomials},
     journal = {Journal of Algebraic Combinatorics},
     pages = {141--151},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a1/}
}
TY  - JOUR
AU  - Petrullo, P.
AU  - Senato, D.
TI  - Explicit formulae for kerov polynomials
JO  - Journal of Algebraic Combinatorics
PY  - 2011
SP  - 141
EP  - 151
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a1/
LA  - en
ID  - JAC_2011__33_1_a1
ER  - 
%0 Journal Article
%A Petrullo, P.
%A Senato, D.
%T Explicit formulae for kerov polynomials
%J Journal of Algebraic Combinatorics
%D 2011
%P 141-151
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a1/
%G en
%F JAC_2011__33_1_a1
Petrullo, P.; Senato, D. Explicit formulae for kerov polynomials. Journal of Algebraic Combinatorics, Tome 33 (2011) no. 1, pp. 141-151. http://geodesic.mathdoc.fr/item/JAC_2011__33_1_a1/