Partition models for the crystal of the basic $U_{q}(\widehat {\mathfrak{sl}}_{n})$-module
Journal of Algebraic Combinatorics, Tome 32 (2010) no. 3, pp. 339-370.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For each $n \geq 3$, we construct an uncountable family of models of the crystal of the basic $U _{ q}([^(\mathfrak sl)] _{ n})$ U_q($\widehat {\mathfrak $sl_n)-module. These models are all based on partitions, and include the usual $n$-regular and $n$-restricted models, as well as Berg's ladder crystal, as special cases.
Keywords: keywords partition, highest-weight crystal
@article{JAC_2010__32_3_a6,
     author = {Fayers, Matthew},
     title = {Partition models for the crystal of the basic $U_{q}(\widehat {\mathfrak{sl}}_{n})$-module},
     journal = {Journal of Algebraic Combinatorics},
     pages = {339--370},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2010__32_3_a6/}
}
TY  - JOUR
AU  - Fayers, Matthew
TI  - Partition models for the crystal of the basic $U_{q}(\widehat {\mathfrak{sl}}_{n})$-module
JO  - Journal of Algebraic Combinatorics
PY  - 2010
SP  - 339
EP  - 370
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2010__32_3_a6/
LA  - en
ID  - JAC_2010__32_3_a6
ER  - 
%0 Journal Article
%A Fayers, Matthew
%T Partition models for the crystal of the basic $U_{q}(\widehat {\mathfrak{sl}}_{n})$-module
%J Journal of Algebraic Combinatorics
%D 2010
%P 339-370
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2010__32_3_a6/
%G en
%F JAC_2010__32_3_a6
Fayers, Matthew. Partition models for the crystal of the basic $U_{q}(\widehat {\mathfrak{sl}}_{n})$-module. Journal of Algebraic Combinatorics, Tome 32 (2010) no. 3, pp. 339-370. http://geodesic.mathdoc.fr/item/JAC_2010__32_3_a6/