On balanced colorings of the $n$-cube
Journal of Algebraic Combinatorics, Tome 32 (2010) no. 3, pp. 379-387.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A 2-coloring of the $n$-cube in the $n$-dimensional Euclidean space can be considered as an assignment of weights of 1 or 0 to the vertices. Such a colored $n$-cube is said to be balanced if its center of mass coincides with its geometric center. Let $B _{ n,2 k }$ be the number of balanced 2-colorings of the $n$-cube with $2 k$ vertices having weight 1. Palmer, Read, and Robinson conjectured that for $n\geq 1$, the sequence ${ B _{ n,2 k}} _{ k=0,1, \frac{1}{4} ,2 $^ n -1 {B_n,2k}_k=0,1,ldots,2^n-1 is symmetric and unimodal. We give a proof of this conjecture. We also propose a conjecture on the log-concavity of $B _{ n,2 k }$ for fixed $k$, and by probabilistic method we show that it holds when $n$ is sufficiently large.
Keywords: keywords unimodality, $n$-cube, balanced coloring
@article{JAC_2010__32_3_a4,
     author = {Chen, William Y.C. and Wang, Larry X.W.},
     title = {On balanced colorings of the $n$-cube},
     journal = {Journal of Algebraic Combinatorics},
     pages = {379--387},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2010__32_3_a4/}
}
TY  - JOUR
AU  - Chen, William Y.C.
AU  - Wang, Larry X.W.
TI  - On balanced colorings of the $n$-cube
JO  - Journal of Algebraic Combinatorics
PY  - 2010
SP  - 379
EP  - 387
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2010__32_3_a4/
LA  - en
ID  - JAC_2010__32_3_a4
ER  - 
%0 Journal Article
%A Chen, William Y.C.
%A Wang, Larry X.W.
%T On balanced colorings of the $n$-cube
%J Journal of Algebraic Combinatorics
%D 2010
%P 379-387
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2010__32_3_a4/
%G en
%F JAC_2010__32_3_a4
Chen, William Y.C.; Wang, Larry X.W. On balanced colorings of the $n$-cube. Journal of Algebraic Combinatorics, Tome 32 (2010) no. 3, pp. 379-387. http://geodesic.mathdoc.fr/item/JAC_2010__32_3_a4/