Tutte polynomials of bracelets
Journal of Algebraic Combinatorics, Tome 32 (2010) no. 3, pp. 389-398.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The identity linking the Tutte polynomial with the Potts model on a graph implies the existence of a decomposition resembling that previously obtained for the chromatic polynomial. Specifically, let ${ G _{ n }}$ be a family of bracelets in which the base graph has $b$ vertices. It is shown here (Theorems 3 and 4) that the Tutte polynomial of $G _{ n }$ can be written as a sum of terms, one for each partition $\pi $ of a nonnegative integer $\ell \leq b: ( x -1) T( G _{ n}; x, y)$= å $_{ p} m _{ p}( x, y)\operatorname tr( N _{ p}( x, y)) ^{ n}$. (x-1)$T(G_n;x,y)=$sum_pim_pi(x,y)$\operatorname $trbigl(N_pi(x,y)bigr)^n. The matrices $N _{ \pi }( x, y)$ are (essentially) the constituents of a `Potts transfer matrix', and a formula for their sizes is obtained. The multiplicities $m _{ \pi }( x, y)$ are obtained by substituting $k=( x - 1)( y - 1)$ in the expressions $m _{ \pi }( k)$ previously obtained in the chromatic case. As an illustration, explicit calculations are given for some small bracelets.
Keywords: keywords tutte polynomial, Potts model, transfer matrix, Specht modules
@article{JAC_2010__32_3_a3,
     author = {Biggs, Norman},
     title = {Tutte polynomials of bracelets},
     journal = {Journal of Algebraic Combinatorics},
     pages = {389--398},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2010__32_3_a3/}
}
TY  - JOUR
AU  - Biggs, Norman
TI  - Tutte polynomials of bracelets
JO  - Journal of Algebraic Combinatorics
PY  - 2010
SP  - 389
EP  - 398
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2010__32_3_a3/
LA  - en
ID  - JAC_2010__32_3_a3
ER  - 
%0 Journal Article
%A Biggs, Norman
%T Tutte polynomials of bracelets
%J Journal of Algebraic Combinatorics
%D 2010
%P 389-398
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2010__32_3_a3/
%G en
%F JAC_2010__32_3_a3
Biggs, Norman. Tutte polynomials of bracelets. Journal of Algebraic Combinatorics, Tome 32 (2010) no. 3, pp. 389-398. http://geodesic.mathdoc.fr/item/JAC_2010__32_3_a3/