($q,t$)-deformations of multivariate hook product formulae
Journal of Algebraic Combinatorics, Tome 32 (2010) no. 3, pp. 399-416.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We generalize multivariate hook product formulae for $P$-partitions. We use Macdonald symmetric functions to prove a $( q, t)$-deformation of Gansner's hook product formula for the generating functions of reverse (shifted) plane partitions. (The unshifted case has also been proved by Adachi.) For a $d$-complete poset, we present a conjectural $( q, t)$-deformation of Peterson-Proctor's hook product formula.
Keywords: keywords hook product formula, reverse plane partition, Macdonald symmetric functions, $P$-partition, $d$-complete poset
@article{JAC_2010__32_3_a2,
     author = {Okada, Soichi},
     title = {($q,t$)-deformations of multivariate hook product formulae},
     journal = {Journal of Algebraic Combinatorics},
     pages = {399--416},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2010__32_3_a2/}
}
TY  - JOUR
AU  - Okada, Soichi
TI  - ($q,t$)-deformations of multivariate hook product formulae
JO  - Journal of Algebraic Combinatorics
PY  - 2010
SP  - 399
EP  - 416
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2010__32_3_a2/
LA  - en
ID  - JAC_2010__32_3_a2
ER  - 
%0 Journal Article
%A Okada, Soichi
%T ($q,t$)-deformations of multivariate hook product formulae
%J Journal of Algebraic Combinatorics
%D 2010
%P 399-416
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2010__32_3_a2/
%G en
%F JAC_2010__32_3_a2
Okada, Soichi. ($q,t$)-deformations of multivariate hook product formulae. Journal of Algebraic Combinatorics, Tome 32 (2010) no. 3, pp. 399-416. http://geodesic.mathdoc.fr/item/JAC_2010__32_3_a2/