Symmetric functions, codes of partitions and the KP hierarchy
Journal of Algebraic Combinatorics, Tome 32 (2010) no. 2, pp. 211-226.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider an operator of Bernstein for symmetric functions and give an explicit formula for its action on an arbitrary Schur function. This formula is given in a remarkably simple form when written in terms of some notation based on the code of a partition. As an application, we give a new and very simple proof of a classical result for the KP hierarchy, which involves the Plücker relations for Schur function coefficients in a $\tau $-function for the hierarchy. This proof is especially compact because we are able to restate the Plücker relations in a form that is symmetrical in terms of partition code notation.
Keywords: symmetric functions, Schur functions, plücker relations, KP hierarchy, combinatorial bijection, partition code
@article{JAC_2010__32_2_a4,
     author = {Carrell, S.R. and Goulden, I.P.},
     title = {Symmetric functions, codes of partitions and the {KP} hierarchy},
     journal = {Journal of Algebraic Combinatorics},
     pages = {211--226},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2010__32_2_a4/}
}
TY  - JOUR
AU  - Carrell, S.R.
AU  - Goulden, I.P.
TI  - Symmetric functions, codes of partitions and the KP hierarchy
JO  - Journal of Algebraic Combinatorics
PY  - 2010
SP  - 211
EP  - 226
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2010__32_2_a4/
LA  - en
ID  - JAC_2010__32_2_a4
ER  - 
%0 Journal Article
%A Carrell, S.R.
%A Goulden, I.P.
%T Symmetric functions, codes of partitions and the KP hierarchy
%J Journal of Algebraic Combinatorics
%D 2010
%P 211-226
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2010__32_2_a4/
%G en
%F JAC_2010__32_2_a4
Carrell, S.R.; Goulden, I.P. Symmetric functions, codes of partitions and the KP hierarchy. Journal of Algebraic Combinatorics, Tome 32 (2010) no. 2, pp. 211-226. http://geodesic.mathdoc.fr/item/JAC_2010__32_2_a4/