Covering all points except one
Journal of Algebraic Combinatorics, Tome 32 (2010) no. 1, pp. 59-66.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In many point-line geometries, to cover all points except one, more lines are needed than to cover all points. Bounds can be given by looking at the dimension of the space of functions induced by polynomials of bounded degree.
Keywords: keywords finite geometry, covering, blocking set
@article{JAC_2010__32_1_a4,
     author = {Blokhuis, A. and Brouwer, A.E. and Sz\H{o}nyi, T.},
     title = {Covering all points except one},
     journal = {Journal of Algebraic Combinatorics},
     pages = {59--66},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2010__32_1_a4/}
}
TY  - JOUR
AU  - Blokhuis, A.
AU  - Brouwer, A.E.
AU  - Szőnyi, T.
TI  - Covering all points except one
JO  - Journal of Algebraic Combinatorics
PY  - 2010
SP  - 59
EP  - 66
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2010__32_1_a4/
LA  - en
ID  - JAC_2010__32_1_a4
ER  - 
%0 Journal Article
%A Blokhuis, A.
%A Brouwer, A.E.
%A Szőnyi, T.
%T Covering all points except one
%J Journal of Algebraic Combinatorics
%D 2010
%P 59-66
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2010__32_1_a4/
%G en
%F JAC_2010__32_1_a4
Blokhuis, A.; Brouwer, A.E.; Szőnyi, T. Covering all points except one. Journal of Algebraic Combinatorics, Tome 32 (2010) no. 1, pp. 59-66. http://geodesic.mathdoc.fr/item/JAC_2010__32_1_a4/