$q,t$-Fuß-Catalan numbers for finite reflection groups
Journal of Algebraic Combinatorics, Tome 32 (2010) no. 1, pp. 67-97.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In type $A$, the $q, t$-Fuß-Catalan numbers can be defined as the bigraded Hilbert series of a module associated to the symmetric group. We generalize this construction to (finite) complex reflection groups and, based on computer experiments, we exhibit several conjectured algebraic and combinatorial properties of these polynomials with nonnegative integer coefficients. We prove the conjectures for the dihedral groups and for the cyclic groups. Finally, we present several ideas on how the $q, t$-Fuß-Catalan numbers could be related to some graded Hilbert series of modules arising in the context of rational Cherednik algebras and thereby generalize known connections.
Keywords: keywords Catalan number, fuß-Catalan number, $q$, t$-Catalan number$, nonnesting partition, Dyck path, shi arrangement, Cherednik algebra
@article{JAC_2010__32_1_a3,
     author = {Stump, Christian},
     title = {$q,t${-Fu{\ss}-Catalan} numbers for finite reflection groups},
     journal = {Journal of Algebraic Combinatorics},
     pages = {67--97},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2010__32_1_a3/}
}
TY  - JOUR
AU  - Stump, Christian
TI  - $q,t$-Fuß-Catalan numbers for finite reflection groups
JO  - Journal of Algebraic Combinatorics
PY  - 2010
SP  - 67
EP  - 97
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2010__32_1_a3/
LA  - en
ID  - JAC_2010__32_1_a3
ER  - 
%0 Journal Article
%A Stump, Christian
%T $q,t$-Fuß-Catalan numbers for finite reflection groups
%J Journal of Algebraic Combinatorics
%D 2010
%P 67-97
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2010__32_1_a3/
%G en
%F JAC_2010__32_1_a3
Stump, Christian. $q,t$-Fuß-Catalan numbers for finite reflection groups. Journal of Algebraic Combinatorics, Tome 32 (2010) no. 1, pp. 67-97. http://geodesic.mathdoc.fr/item/JAC_2010__32_1_a3/